Species-Specific Heterochromatin Prevents Mitotic Chromosome Segregation to Cause Hybrid Lethality in Drosophila

نویسندگان

  • Patrick M. Ferree
  • Daniel A. Barbash
چکیده

Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal cytoplasm that are required for heterochromatin formation of this species-specific satellite block. These findings demonstrate how divergence of noncoding repetitive sequences between species can directly cause reproductive isolation by altering chromosome segregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incompatibility between X chromosome factor and pericentric heterochromatic region causes lethality in hybrids between Drosophila melanogaster and its sibling species.

The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophil...

متن کامل

Genetics and lineage-specific evolution of a lethal hybrid incompatibility between Drosophila mauritiana and its sibling species.

The Dobzhansky-Muller model posits that intrinsic postzygotic reproductive isolation--the sterility or lethality of species hybrids--results from the evolution of incompatible epistatic interactions between species: favorable or neutral alleles that become fixed in the genetic background of one species can cause sterility or lethality in the genetic background of another species. The kind of hy...

متن کامل

Normal segregation of a foreign-species chromosome during Drosophila female meiosis despite extensive heterochromatin divergence.

The abundance and composition of heterochromatin changes rapidly between species and contributes to hybrid incompatibility and reproductive isolation. Heterochromatin differences may also destabilize chromosome segregation and cause meiotic drive, the non-Mendelian segregation of homologous chromosomes. Here we use a range of genetic and cytological assays to examine the meiotic properties of a...

متن کامل

Molecular Analysis of Core Kinetochore Composition and Assembly in Drosophila melanogaster

BACKGROUND Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. METHODOLOGY/PRINCIPAL FINDINGS We employed bioinformatics, proteomics and cell biology methods to identify and analyze the interaction netwo...

متن کامل

The Hybrid Incompatibility Genes Lhr and Hmr Are Required for Sister Chromatid Detachment During Anaphase but Not for Centromere Function.

Crosses between Drosophila melanogaster females and Drosophila simulans males produce hybrid sons that die at the larval stage. This hybrid lethality is suppressed by loss-of-function mutations in the D. melanogaster Hybrid male rescue (Hmr) or in the D. simulans Lethal hybrid rescue (Lhr) genes. Previous studies have shown that Hmr and Lhr interact with heterochromatin proteins and suppress ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2009